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Abstract

There is a growing consensus that land surface models (LSMs) that simulate terres-
trial biosphere exchanges of matter and energy must be better constrained with data
to quantify and address their uncertainties. FLUXNET, an international network of
sites that measure the land surface exchanges of carbon, water and energy using the5

eddy covariance technique, is a prime source of data for model improvement. Here
we outline a multi-stage process for fusing LSMs with FLUXNET data to generate bet-
ter models with quantifiable uncertainty. First, we describe FLUXNET data availability,
and its random and systematic biases. We then introduce methods for assessing LSM
model runs against FLUXNET observations in temporal and spatial domains. These10

assessments are a prelude to more formal model-data fusion (MDF). MDF links model
to data, based on error weightings. In theory, MDF produces optimal analyses of the
modelled system, but there are practical problems. We first discuss how to set model
errors and initial conditions. In both cases incorrect assumptions will affect the outcome
of the MDF. We then review the problem of equifinality, whereby multiple combinations15

of parameters can produce similar model output. Fusing multiple independent data
provides a means to limit equifinality. We then show how parameter probability den-
sity functions (PDFs) from MDF can be used to interpret model process validity, and
to propagate errors into model outputs. Posterior parameter distributions are a useful
way to assess the success of MDF, combined with a determination of whether model20

residuals are Gaussian. If the MDF scheme provides evidence for temporal variation in
parameters, then that is indicative of a critical missing dynamic process. A comparison
of parameter PDFs generated with the same model from multiple FLUXNET sites can
provide insights into the concept and validity of plant functional types (PFT) – we would
expect similar parameter estimates among sites sharing a single PFT. We conclude by25

identifying five major model-data fusion challenges for the FLUXNET and LSM commu-
nities: 1) to determine appropriate use of current data and to explore the information
gained in using longer time series; 2) to avoid confounding effects of missing process
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representation on parameter estimation; 3) to assimilate more data types, including
those from earth observation; 4) to fully quantify uncertainties arising from data bias,
model structure, and initial conditions problems; and 5) to carefully test current model
concepts (e.g. PFTs) and guide development of new concepts.

1 Introduction5

Land surface models are important tools for understanding and predicting mass and
energy exchange between the terrestrial biosphere and atmosphere. A land surface
model (LSM) is a typical and critical component of larger domain models, which are
aimed at global integration, for example global carbon cycle models and prognostic
global climate models. These integrated models are key tools for predicting the likely10

future states of the Earth system under anthropogenic forcing (IPCC, 2007), and for
assessing feedbacks with, and impacts on, the biosphere (MEA, 2005). Land surface
models (e.g. SiB, CLM, IBIS) represent the key processes regulating energy and mat-
ter exchange – photosynthesis, respiration, evapotranspiration (Bonan, 1995; Foley
et al., 1996; Williams et al., 1996; Sellers et al., 1997), and their coupling. These15

processes are sensitive to environmental drivers on a range of timescales, for exam-
ple, responding to diurnal changes in insolation, and seasonal shifts in temperature
and precipitation. Land surface processes influence the climate system, through their
control of energy balance and greenhouse gas exchanges. Forecasts of global terres-
trial C dynamics that rely on LSMs show significant variability over decadal timescales20

(Friedlingstein et al., 2006), especially when coupled to climate, indicating that major
uncertainties remain in the representation of critical ecosystem processes and climate
feedbacks within global models.

In recent years the widespread use of the eddy covariance (EC) methodology has led
a large increase in data on terrestrial land surface exchanges (Baldocchi et al., 2001).25

FLUXNET is an international network of EC sites with data processed according to
standardized protocols (Papale et al., 2006). The EC time-series data from FLUXNET
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provide rich insights into exchanges of water, energy and CO2 across a range of
biomes and timescales. While LSM forward runs are commonly compared with EC
data, there is a growing consensus that models must be better constrained with such
data to address process uncertainty (Bonan, 2008). A stronger link between models
and observations is needed to identify poorly represented or missing processes, and5

to provide confidence intervals on model parameter estimates and forecasts.
New methods are becoming available to assist data exploitation and generate links

to models, based on the concept of model-data fusion, MDF (Raupach et al., 2005).
MDF encompasses a range of procedures for combining a set or sets of observations
and a model, while quantitatively incorporating the uncertainties of both. MDF is used10

to estimate model states and/or parameters, and their respective uncertainties.
The objective of this paper is to provide guidance to the LSM community on how

to make better use of eddy covariance data, particularly via MDF. We first outline the
philosophical principles behind model-data fusion for model improvement. We then
discuss the structure of typical land surface models and how they are parameterised.15

Next we detail FLUXNET data availability and quality, specifically in the context of land
surface models. We discuss approaches for model and data evaluation, focussing
on new techniques using time series and spatial analyses. Finally we discuss formal
model-data fusion and highlight the need for multiple constraints in model evaluation
and improvement, and effective assessment of model and data errors. We conclude20

with a set of challenges for the LSM and MDF communities.

2 The philosophy of model-data fusion for model improvement

Model calibration, evaluation, testing, and structural improvement (re-formulation) are
all key aspects of model-data fusion; in other words, MDF is not simply tuning model
parameters to yield model predictions that match the calibration data. Rather, it is25

a multi-stage process (Fig. 1). At each of these stages, there is interplay between data,
model structure, and modeller, and thus MDF. A rigorous characterization of the model
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structure through consistency checks and testing sensitivity to parameters and drivers,
in the same way as in classical forward modelling approaches, is still a prerequisite for
a meaningful data-model fusion. This model characterization also constitutes the base-
line against which any improvements and reductions of uncertainties can be judged.
A key part of MDF is model parameter estimation wherein model parameters are ad-5

justed so that the model state(s) come into closer agreement with the observations.
Following the optimization of model parameters (defined here loosely to potentially in-
clude both parameters sensu stricto and state variables), it is vitally important that fur-
ther analyses be conducted by the modeller to: (1) quantify uncertainties in optimized
parameters (and thus identify those parameters, and related processes, that are poorly10

constrained by the data at hand); (2) evaluate the plausibility and temporal stability of
optimized parameter values (reality check); (3) understand when and why the model
is failing (“detective work”, which may involve additional validation against indepen-
dent data sets); and (4) identify opportunities for model improvement (re-formulation
of structure and process representation). When treated in this manner, MDF has rel-15

evance to both basic and applied scientific questions. Thus, not only do identified
deficiencies lead to model reformulation (followed by further data-model fusion, pos-
sibly with new data sets being brought to bear), but the model can also be applied to
answer new science questions. Successful application of the model is, however, con-
tingent on the modeller’s understanding (which comes from the posterior analyses) of20

the domain (in terms of space, time, and prognostic variables), where the model can
be applied with precision and confidence.

3 Land Surface Models

All models consist of seven general components; the system boundary, forcing inputs,
initial states, parameters, model structure, model states, and outputs (Liu and Gupta,25

2007). The details of these components for typical LSMs are given in Table 1. These
are physical, chemical and biological processes, related to fluxes of energy, water and
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carbon, that are sensitive to changes in environmental forcing on multiple time scales.
Models differ as to whether they also represent processes operating on longer time
scales. Some models link CO2 fluxes to plant traits such as allocation, litter production,
phenology, vegetation dynamics and competition, while others rely on prescribed inputs
of vegetation structure to drive flux predictions. Here, we focus largely on models that5

couple fluxes to the dynamics of structural C pools, as only these models are capable
of prediction over decadal timescales.

The typical approach for LSM parameterisation has been to use the concept of plant
functional types (PFT) (Prentice et al., 1992). The terrestrial biosphere is divided into
discrete units based on presence or absence of trees, shrubs or grasses; evergreen10

or deciduous habit; C3 or C4 photosynthetic pathways; and broad or needle leaves.
Each of these PFTs has a nominal parameter vector, derived largely from the literature,
laboratory experiments, or limited field campaigns focussed on particular ecosystems
components, and often supplemented by steady state assumptions. In most models,
the distribution of PFTs across the globe is prescribed, but in dynamic global vegeta-15

tion models (DGVMs) the distribution of PFTs is determined by bioclimatic limits and
competition among PFTs within shared bioclimatic space (Sitch et al., 2003). Field
observations, however, suggest that intrinsic parameter values vary over space and
environmental conditions, even within a PFT, challenging the assumptions of the PFT
approach (Wright et al., 2004).20

Differences among LSMs in structure and parameterisation mean that they have dif-
ferent response functions relating rates of carbon and water fluxes to global change
factors (e.g., CO2 concentration, temperature, and precipitation or soil moisture con-
tent). Subtle changes to response functions and parameterizations can yield divergent
modelled responses of ecosystems to environmental change, as has been demon-25

strated by parameter sensitivity studies (e.g. Zaehle et al., 2005; White et al., 2000)
and model intercomparisons (e.g. Friedlingstein et al., 2006; Jung et al., 2007). Differ-
ences in the way processes interact in the model are also likely candidates for divergent
model behaviour, but even harder to detect than differences in process representation
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(Rastetter, 2003). Rigorous comparison with data provides the basis for better con-
straining model structure and for generating more defensible parameter estimates with
realistic uncertainty estimates.

4 Data availability, limitations and challenges

4.1 Overall overview5

Continuous measurements of surface-atmosphere CO2 exchange using the eddy co-
variance technique started in 1990s (Verma, 1990; Baldocchi, 2003). Consequently,
many EC observation sites have been established, leading to the development of
regional networks, such as AmeriFlux and Euroflux, and then the global network
FLUXNET, a “network of regional networks” (Baldocchi et al., 2001). The need for10

harmonized data processing has been recognized in the different networks, and re-
spective processing schemes documented in the literature (Foken and Wichura, 1996;
Aubinet et al., 2000; Falge et al., 2001; Reichstein et al., 2005; Papale et al., 2006;
Moffat et al., 2007). A first cross-network standardized dataset was established in
2000 (Marconi dataset) and contained data from 38 sites from North America and Eu-15

rope. In 2007 the first global standardized data set (“La-Thuile FLUXNET dataset”, cf.
http://www.fluxdata.org) was established.

4.2 Current distribution and representativeness of flux sites

The current data set contains data from >950 years and 250 sites, from all continents
except Antarctica. The majority of sites are located within the extra-tropical Northern20

hemisphere (Fig. 3a) and temperate climates (Table 2), although most areas in the
temperature-climate space are covered at least by some sites (Fig. 3b). Similarly, most
coarse vegetation types are covered by the current network, however with crop sites
underrepresented particularly outside North America and Europe. Due to the history of

2792

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/2785/2009/bgd-6-2785-2009-print.pdf
http://www.biogeosciences-discuss.net/6/2785/2009/bgd-6-2785-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.fluxdata.org


BGD
6, 2785–2835, 2009

Improving land
surface models with

FLUXNET data

M. Williams et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

FLUXNET, long-term data sets with >6 years data exist for only 38 sites (as of August
2008), and most are forests. Even within North America or Europe, where sites are
reasonably well distributed among the major biomes (Hargrove et al., 2003), archived
flux data on their own cannot possibly provide the information needed for a full spatio-
temporal understanding of terrestrial carbon processes. Processes with time constants5

longer than the data record cannot be reliably identified, and spatial representativeness
may still be limited at the regional scale. For example, Fig. 4 shows temporal devel-
opment of MODIS FPAR in a 100×100 km area surrounding one eddy-flux tower. The
figure demonstrates that FPAR at the tower site exceeds average FPAR for the broader
region, and indicates that the tower represents the more productive portion of the land-10

scape, assuming FPAR is a proxy for productivity. This limitation can be overcome
by integration of data across multiple temporal and spatial scales – i.e. data on car-
bon stocks and pools, and how these pools change over time combined with spatially
extensive observations from remote sensing (Quaife et al., 2008) or national forest
inventories, e.g. US Forest Inventory and Analysis Program, Gillespie et al. (1999).15

4.3 Data characteristics and limitations

The global network of eddy covariance towers not only provides flux observations them-
selves but also the infrastructure necessary to study ecosystem processes, and rela-
tionships between ecosystem processes and environmental forcing, across a range
of spatial and temporal scales. The time averaging of the measurements (typically20

either 30 or 60 min) is adequate to resolve both diurnal cycles and fast ecosystem re-
sponses to changes in weather. In addition to the measured fluxes (typically CO2 as
well as latent and sensible heat) and enviro-meteorological data, many sites maintain
a programme of comprehensive ecological measurements, including detailed stand in-
ventories, litterfall collections, soil respiration and leaf-level photosynthesis, soil and25

foliar chemistry, phenology and leaf area index.
However, a careful consideration of the limitations of the data is mandatory to avoid

overinterpretation of model-data mismatches in evaluation or assimilation schemes.
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First, the flux data are noisy and potentially biased, containing the “true” flux, plus
both systematic and random errors and uncertainties (Table 3). There is a growing
recognition within the EC community on the need to quantify the random errors inherent
in half-hourly flux measurements (Hollinger and Richardson, 2005; Richardson et al.,
2006), but also uncertainties in the corrections of systematic errors. Because data5

uncertainties enter directly into model-data fusion (see below), misspecification of data
uncertainties affects parameter estimates and propagates into the model predictions,
leading Raupach et al. (2005) to suggest that “data uncertainties are as important as
data values themselves”.

Recent research, using data from sites in both North America (Richardson et al.,10

2006) and Europe (Richardson et al., 2008), indicates that the random error scales
with the magnitude of the flux, thus violating one key assumption (homoscedastic-
ity) underlying ordinary least squares optimization. On the other hand, Lasslop et
al. (2008) analysed further properties of the random error component and found little
temporal autocorrelation and cross-correlation of the H2O and CO2 flux errors, imply-15

ing that the weighted least squares criterion yields maximum likelihood estimates of
the model parameters. The assumptions about the statistical distribution of the flux
error influences the weighting on data in parameter and state estimation procedures
(e.g. least (weighted) squares when Gaussian, mean absolute error when LaPlace,
etc.; Richardson and Hollinger, 2005). Random flux measurement errors are relatively20

large at the half-hourly time step (∼20% of the flux), and when fully propagated over
the course of a year using the relationships in Richardson et al. (2006) typically result
in an uncertainty of 25–50 g C m−2 yr−1. However, the characterization of the statistical
properties of flux measurement error remains currently under debate.

Systematic flux biases are less easily evaluated, but are certainly non-trivial25

(Goulden et al., 1996; Moncrieff et al., 1996; Baldocchi, 2003). One major source
of bias is incorrect measurement of net ecosystem exchange under low-turbulence
conditions, especially at night. Attempts to minimize this bias use so-called u∗-filtering
(Papale et al., 2006), in which measurements are rejected when made under conditions
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of low turbulence (i.e. below a threshold friction velocity). However, the threshold value
for u∗ is often uncertain. Preliminary analysis of the La Thuile data set indicated that
the uncertainty introduced varies between sites, but lies between 50–150 g C m−2 yr−1

in most cases (Reichstein et al., unpublished).
Energy balance closure at most sites is poor: the sum of sensible, latent and soil5

heat fluxes is generally ∼20% lower than the total available radiative energy, which
may indicate systematic errors in measured CO2 fluxes as well (Wilson et al., 2002).
Advection is believed to occur at many sites, particularly those with tall vegetation, and
is thought to bias annual estimates of net sequestration upwards (Lee, 1998). While
these (and other) systematic errors are known to affect flux measurements, much less10

is known about how to adequately quantify and correct for them; typically the time scale
at which the correction needs to be applied, and in some cases even the direction of the
appropriate correction, is highly uncertain (see discussion in Richardson et al., 2008).

Although attempts are made to make continuous flux measurements, in reality there
are gaps in the flux record. These gaps most often occur when conditions are unsuit-15

able for making measurements (e.g., periods of rain or low turbulence), or as a result
of instrument failure. A variety of methods have been proposed and evaluated for
filling these gaps and producing continuous time series; the best methods appear to
approach the limits imposed by the random flux measurement errors described above
(e.g., Moffat et al., 2007). In general, MDF will want to use only measured, and not20

gap-filled, data. However, in some cases (if, for example, the model time step is differ-
ent from that of the data, e.g. daily) it may be necessary to resort to using gap-filled
data, in which case it is important that the distinction between “measured” and “filled”
data be understood.

Another significant challenge to obtaining process-level insights from measured25

fluxes is that tower-based measurements reflect the net ecosystem exchange (NEE)
of CO2, whereas the process-related quantities of interest are typically the component
fluxes, gross photosynthesis (GPP) and ecosystem respiration (RE ; also the above-
and below-ground, and autotrophic and heterotrophic, components of ecosystem res-
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piration), which, unlike NEE, represent distinct sets of physiological activity. In a model-
data fusion context, the net flux (particularly when integrated over a full day or even
month) does not constrain the overall dynamics as well as the component fluxes be-
cause the net flux could be mistakenly modelled by gross fluxes having large compen-
sating errors; any combination of GPP and RE magnitudes can result in a given NEE;5

the problem is mathematically unconstrained.

4.4 Links to other datasets

While flux data themselves are valuable for evaluating and constraining models, me-
teorological and ecosystem structural data are needed as drivers and additional con-
straints. While there are also uncertainties associated with ancillary meteorological10

data, these are primarily due to spatial heterogeneity rather than instrument accuracy
or precision. Similar and often larger problems of measurement accuracy, sampling
uncertainty and representativeness occur with biometric measurements (e.g. fine root
NPP) and chamber based flux estimates (e.g. soil and stem respiration) (Savage et al.,
2008; Hoover, 2008).15

Long-term continuous flux observations are much more valuable when coupled with
a full suite of ancillary ecological measurements. Having measurements of both pools
and fluxes means that both can be used to constrain models. With multiple constraints
the biases in any single set of measurements becomes less critical and data-set inter-
nal inconsistencies – that can never be resolved by a model obeying conservation of20

mass and energy – can be identified (Williams et al., 2005). Thus flux sites most appro-
priate for model data fusion under current conditions have multiple years of continuous
flux and meteorological data, with well-quantified uncertainties, along with reliable bio-
metric data on vegetation and soil pools and primary productivity, as well as temporal
estimate of leaf area index, soil respiration and sap-flux. Many global change experi-25

ments that manipulate temperature, CO2, precipitation, nitrogen and other factors often
provide extensive measurements of many carbon, water, and energy processes. Data
sets from manipulation experiments are not only valuable for constraining parameters
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in land surface models, but also useful for examining how environmental factors influ-
ences of key models parameters (Luo et al., 2003; Xu et al., 2006).

5 Techniques for model and data evaluation

There exist a range of metrics for evaluating models against observations which are
an important component of the model-data fusion process (Fig. 1). Typical techniques5

include calculations of root-mean-square error (RMSE), residual plots, and calculation
of statistics like R2 to determine the amount of measurement variability explained by
the model. These approaches are discussed elsewhere in detail (Taylor, 2001). Here,
instead, we discuss novel model evaluation techniques, using eddy flux data to eval-
uate models in the time and frequency domains, and in physical and climate space,10

before considering model-data fusion itself.

5.1 Evaluation in time: measurement patterns to assess model performance

The evaluation of LSMs using traditional methods, may not be optimal because of large,
non-random errors and bias in instantaneous or aggregated fluxes. We suggest that
model evaluation may be improved by quantifying patterns of C exchange at different15

frequencies (Baldocchi et al., 2001; Braswell et al., 2005). We demonstrate such an
approach for model improvement and evaluation using a case study from an Australian
forest site (Fig. 5). We compared measured interannual latent energy (LE) from the
Tumbarumba flux monitoring site (Leuning et al., 2005), corresponding predictions from
the CABLE model, and a CABLE improvement that explicitly accounts for soil and litter20

layer evaporation (CABLESL) (Kowalczyk et al., 2006; Wang and Leuning, 1998) after
Abramowitz et al. (2008).

CABLESL represents an improvement in overall model fit compared to CABLE
(Fig. 5a and b), but scatterplots and associated goodness-of-fit statistics cannot deter-
mine the times or frequencies when the model has been improved, or how the model25
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can be further improved. A plot of model residuals over time (Fig. 5c) identifies lower
amplitude in the seasonal residual pattern with CABLESL, but this seasonal pattern
remains, and dominates the visual interpretation of the residual time series. Does
CABLESL also represent an improvement at different frequencies, and do these im-
provements act across the full measured time series? Wavelet decomposition answers5

these questions by quantifying the frequencies that contribute to total signal variance
across the time series (Torrence and Compo, 1998).

Wavelet decomposition quantifies local variations in time series power by creating
a picture, called the wavelet half-plane, of variance at multiple scales across time. In
contrast, standard Fourier decomposition employs infinite sinusoidal basis functions10

and thus assumes a stationary signal (one in which the statistics do not change over
time), an assumption that is not often met with flux data. In the CABLE model example,
orthonormal wavelet transformation (OWT; Katul et al., 2001) can be chosen to identify
biweekly, monthly and seasonal time scales as frequencies at which CABLESL made
an improvement in replicating the total time series variance (Fig. 5d). This analysis15

does not, however, provide detailed information about model improvements across
both time and time-scale, as OWT represents the sum of wavelet coefficients across
time at powers of 2 across time scales.

Variability in CABLESL is significantly related to measurements across time at sea-
sonal time scales of approximately 4 months (102.1 days); note the band at this time20

scale in Fig. 5e and its near disappearance in Fig. 5f. At the same time, swaths of
poor model/measurement coherence exist at shorter time scales, particularly during
the years 2003 and 2005–2006. Unique events that are responsible for these oscil-
lations in the measurement record can be identified, and the CABLE model further
improved.25

5.2 Towards a spatially explicit continental and global scale evaluation of LSMs

LSMs are often evaluated at the site level using EC time series, which can provide
detailed information on the performance of the temporal dynamics of the model. How-
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ever, models developed for continental to global applications should be evaluated on
the appropriate scale in both time and space. Regional comparisons have largely been
neglected partially due to the strong site-by-site focus of flux evaluation to date and
partially due to difficulties in “upscaling”. Spatially and temporarily explicit maps of car-
bon fluxes can be derived from empirical models that use FLUXNET measurements5

in conjunction with remotely sensed and/or meteorological data. Different upscaling
approaches exist, ranging from simple regression models, to complex machine learn-
ing algorithms (Papale and Valentini, 2003; Yang et al., 2007), The results of such
data-oriented models can be used to evaluate process-oriented LSMs operating at re-
gional scales. However, the success of the evaluation depends on whether there is10

sufficient confidence in the empirical upscaling results, or in other words, if the error of
the empirical upscaling is substantially smaller than the error of the LSM simulations.

We undertook a comparison of mean annual GPP estimates for 36 major watersheds
of Europe between four different data-oriented models and three process-oriented
models (i.e. LSMs, see Table 4 for model details). The comparison revealed a much15

closer agreement regarding the spatial pattern of GPP among the data-oriented mod-
els (R2>0.58) than among the process-oriented models. A graphical intercompari-
son of the models is shown in Fig. 6. It is obvious that two of the process-oriented
models had substantially poorer fit than the third, LPJmL. The Lund Potsdam Jena
managed Land model (LPJmL) showed a reasonable agreement with the different20

data-oriented results because it has a realistic implementation of crops, in contrast
to Biome-BGC and Orchidee, which simulate crops simply as productive grasslands.
This treatment appears to be inadequate, as active management and nutrient manipu-
lation differ between a natural grassland and a managed agricultural area. Confidence
in the data-oriented models is gained by the agreement among independent upscaling25

approaches.
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6 Model-data fusion

Rather than compare model outputs with a particular dataset in order to test or cali-
brate the model, model-data fusion techniques combines the two sources of informa-
tion, model and data, into a single product. We define the term “model-data fusion”
to include both data assimilation and model inversion techniques. Data assimilation5

(DA) involves updating the model state vector PDFs according to observations, using
techniques such as the Kalman filter (Williams et al., 2005), or variational approaches
typical with weather forecasting (Courtier et al., 1994). Model inversion involves deter-
mination of parameter PDFs using observations. Model-data fusion allows for integrat-
ing multiple and different types of data (including the associated uncertainties) and for10

including prior knowledge on model parameters and/or initial state variables.
The primary objective of model-data fusion is to improve a model’s performances

by either optimizing/refining the value of the unknown parameters and initial state vari-
ables, or by correcting the model’s trajectory (state variables) according to a given data
set. In the context of the philosophy for model-data fusion outlined above, the residuals15

between data and model output after assimilation and the residuals between prior and
posterior parameter values are important information for subsequent steps of model
structural development. MDF techniques also allow for the propagation of uncertain-
ties between the parameter space and the observation space, and thus estimation of
model prediction uncertainties, e.g. modelled carbon fluxes (Verbeeck et al., 2006).20

Below, we first give a brief overview of different MDF techniques with examples to illus-
trate application and interpretation. We then discuss various problems associated with
MDF and suggest solutions.

6.1 Technical implementation

All MDF techniques require certain steps in common. First, the model must be speci-25

fied, and uncertainties on the model initial states and parameters must be determined
a priori. In filter techniques the model uncertainty itself must be estimated. Second,
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data and their uncertainties must be specified. Third, an observation operator must
be defined, which links the state vector to the observations, accounting for interme-
diate processes (e.g. transport processes), requisite scaling and aggregation (e.g.
NEE=RE−GPP). Fourth, the optimality condition must be defined, whether as some
sort of cost function to be minimised, or a joint model-data likelihood. Fifth, the op-5

timal solution is determined. Finally, the posterior probability density functions of the
parameters and the state vector must be analysed and interpreted.

The search for an optimal solution and the estimation of uncertainties can be
achieved with three different classes of algorithms:

1. “Global search” algorithms, often based on a random generator (Braswell et al.,10

2005; Sacks et al., 2006). These methods are well adapted for highly non-linear
models with multiple minima, but are usually associated with high computational
cost because many model evaluations are required. Several algorithms exist, e.g.
Metropolis or Metropolis Hastings, genetic algorithms.

2. “Gradient-descent” algorithms, following identified directions in the parameter15

space. These methods are highly efficient, but are not best suited for highly di-
mensional nonlinear models as they may end up finding local rather than global
minima. To determine posterior uncertainties, they require the calculation of
model output sensitivity to model parameters (Santaren et al., 2007).

3. “Sequential” algorithms, such as the Kalman filter (Williams et al., 2005; Gove20

and Hollinger, 2006). These methods process data sequentially, in contrast to
the first two classes that treat all observations at once (i.e. batch methods). Se-
quential methods estimate the state vector, which may or may not include param-
eters, in accordance with uncertainties on observations and the underlying model
(Evensen, 2003).25

Combinations of methods can be successful (Vrugt et al., 2005), such as a global
search method to get close to the global minimum, followed by a gradient-descent
method to pinpoint the minimum more accurately.
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The optimization process for both global search and gradient-descent generally re-
quires the calculation of the mismatch between model outputs (M) and observations
(O) and the mismatch between initial or “prior” (Xp) parameter values and those later
determined to be optimal (X ) in a Bayesian framework (Eq. 1). The essence of the
Bayesian approach is the multiplication of probabilities; in practice the log of the data-5

model mismatch (log likelihood) is summed with the log of the prior probabilities. Both
mismatches are weighted according to confidence on observations (R matrix) and prior
knowledge about parameter error covariance (P matrix). The R matrix may contain dif-
ferent kinds of data, which are matched by their error covariances. The P matrix is
crucial because it allows the consistent combination of different kind of data into one10

formulation of the cost function. H is the observation operator, which relates the model
state vecctor to the observations. The data-model and parameter mismatches define
the objective or cost function, J , used in many batch optimisation methods (Lorenc,
1995):

J =
1
2

[
(HM − O)TR−1(HM − O) + (X − Xp)TP −1(X − Xp)

]
(1)15

There are similarities between J and the Kalman gain (K ) used in Kalman filters. K
is used to adjust the model forecast (M f ) to generate an optimal analysis (Ma) based
on the differences between model and observations, and the confidence in model (P
matrix) and observations (R matrix):

K = P fHT (HP fHT + R)−1 (2)20

Ma = M f + K (O − HM f ) (3)

The model error covariance matrix (P ) is updated dynamically in the Kalman filter as
observations are assimilated.

The observation term can take several forms depending on the information that we
want to retrieve: either the diurnal cycle with half hourly fluxes, or the seasonal cycle25

with daily or monthly means. Temporal error correlations (systematic biases) are likely
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to be severe between sub-daily fluxes, for models and observations. To handle this
data redundancy, one can include error correlations in R (a rather difficult task), sub-
sample the whole data set, or use a mean diurnal cycle over a relatively long period
(Santaren et al., 2007).

The cost function defined above (Eq. 1) is commonly used when the error is known5

or assumed to be Gaussian, but other options are possible. For example, the sum of
absolute deviations rather than squared deviations between data and model form the
likelihood when data errors are exponential, reducing the influence of outliers in the
cost function compared to Eq. (1). The choice of cost function is an important one;
an optimization intercomparison by Trudinger et al. (2007) found significantly more10

variation in estimated parameters due to definition of the cost function than choice
of optimization technique. Another important choice in the optimisation is whether to
include all parameters at once at the risk that interactions among parameters yield
big uncertainties and a poor convergence of the algorithm. Optimizing for just a small
set of pre-identified parameters may not include key processes (Wang et al., 2001;15

Reichstein et al., 2003), and in fact is mathematically equivalent to setting infinitely
narrow priors for those parameters not optimized.

6.2 Error estimations: random and systematic error

There are two important differences between random and systematic measurement
errors. First, whereas statistical analyses can be used to estimate the size of random20

errors (Lasslop et al., 2008), systematic errors are difficult to detect or quantify in data-
based analyses (Moncrieff et al., 1996); but see Lee (1998). Second, random errors in
data will increase the uncertainty in data-model fusion parameter estimates and model
predictions, but should not bias the posterior estimates. Systematic errors in data, on
the other hand, are more insidious in that, if not corrected first, they will directly result25

in biased posteriors, see Lasslop et al. (2008) for an example.
Prior values and errors on model parameters also need to be determined, and this is

usually undertaken using literature values, global databases (www.try-db.org; Wright
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et al., 2004) and expert estimation. This critical task partly conditions the realism of
the inverse estimates. In the case of Kalman filters it is also necessary to estimate
the model error, which determines the rate at which uncertainty grows during each
time-step lacking observations. One approach for setting model errors in KF schemes
is to ensure that they are set within bounds that are small enough to avoid tracking5

daily noise in observations, and large enough to shift over weekly-seasonal timescales
in response to process signals. The role of the user in setting parameter and model
errors requires careful inspection of posterior distributions to determine if MDF has
succeeded.

6.3 The initial condition problem10

Correct estimates of both vegetation and soil carbon pools constitute an initial condition
problem of significant relevance in those LSMs with dynamic biogeochemical (BGC)
modelling. The current best practice in LSMs applied globally is to use spin-up rou-
tines until the C cycle is in equilibrium with pre-industrial climate, followed by transient
industrial climate, atmospheric CO2 and N deposition runs (e.g. Churkina et al., 2003;15

Thornton and Rosenbloom, 2005; Morales et al., 2005), and then impose historical
land-use change and management. The initialization process is often prescribed until
ecosystem atmosphere fluxes are in equilibrium, which may lead to overestimation of
both soil (Pietsch and Hasenauer, 2006; Wutzler and Reichstein, 2007) and vegetation
pools, consequently increasing total respiration (RE ). The equilibrium assumption may20

be criticised as not being fully applicable to natural ecosystems. In BGC-model-data
fusion approaches, both empirical as well as process-based methodologies have been
proposed to address these issues (Santaren et al., 2007; Carvalhais et al., 2008; Luo
et al., 2001; Pietsch and Hasenauer, 2006). In ecosystems far from equilibrium, model
parameter uncertainties and biases can be avoided by relaxing or estimating the initial25

conditions. In ecosystems farther from equilibrium, both model parameter uncertain-
ties as well as parameter biases can be avoided by relaxing or optimizing the initial
conditions (Carvalhais et al., 2008), reducing model estimates uncertainties in upscal-
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ing exercises. As an example, in Fig. 7 we show CASA model performance statistics
for estimated net ecosystem production compared against data from ten EC sites. We
compared performance with spun-up initial conditions (i.e. steady state) against an
approach that relaxed the steady state assumption. Performance after parameter op-
timisation was higher using the relaxed approach rather than one that considered the5

system in equilibrium.
The integration of ancillary information on soils and standing biomass pools allows

the initial condition problem to be addressed “independently” from other model evalu-
ation perspectives. Soil measurements and models must quantify and represent soil
pools analogously, which sometimes requires compromises from both data and model.10

Further, information concerning tree age or DBH distribution in forested sites can be
a robust proxy for woody biomass constraints, for which forest inventories as well as
synthesis activities are key contributors (Luyssaert et al., 2007). Disturbance and man-
agement history (Thornton et al., 2002) are additional factors that control the initial
condition of any particular simulation. There are clearly considerable challenges re-15

lated to generating the historical data and including historical and current management
regimes.

6.4 Equifinality

An important issue in parameter estimation is equifinality, where different model rep-
resentations, through parameters or model structures, yield similar effects on model20

outputs, and so can be difficult to distinguish (Medlyn et al., 2005; Beven and Freer,
2001). Such correlations imply that quite different combinations of model parameters or
representations can give a similar match of model outputs to observations. This prob-
lem is particularly relevant to observations of net fluxes, which on their own may not
provide enough information to constrain parameters associated with the component25

gross fluxes. Further, the associated uncertainties in a posteriori regional upscaling
are significant and variable in space and time (Tang and Zhang, 2008) Equifinality in
parameter estimation is illustrated in Fig. 8, which shows the results of a genetic al-
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gorithm applied to the DALEC model (Williams et al., 2005), as part of the REFLEX
project (Fox et al., 2009). The cost function decreased quickly at first, but after about
100 iterations of the genetic algorithm there was only gradual further improvement, yet
the values of some parameters varied significantly after this point (Fig. 8). Address-
ing equifinality requires identification of covariances between parameter estimates and5

the use of multiple data sets to constrain unidentifiable parameters. Thus, it is criti-
cal to assess whether the available observations can adequately constrain the model
parameters or whether more information is required.

6.5 Parameter validation and uncertainty propagation

Estimated parameters should always be interpreted with great care. Posterior val-10

ues are not always directly interpretable (i.e. in a biological sense) due to equifinality
(see above) or to compensating mechanisms related to model deficiencies/biases. In
addition, simplified model structures require aggregated parameters (e.g. a Vcmax –
maximum rate of carboxylation – value of a “big leaf”) that will always be different from
observed parameter values (e.g. determined from measurements of Vcmax on an indi-15

vidual leaf). Nevertheless, comparison with independent real measured parameter val-
ues is an important part of the analysis and validation process. For example, Santaren
et al. (2007) successfully compared their estimated Vcmax with estimates from leaf-level
measurements (their Fig. 7).

A benefit of most model-data fusion approaches is to estimate parameter uncertain-20

ties and the corresponding model output uncertainties. The outcome of the MDF is
a set of parameter PDFs which can then be used to generate an ensemble of model
runs, using time series of climate forcing data. As an example, we generated syn-
thetic, noisy and sparse data from the DALEC model using nominal parameters, and
supplied these to an Ensemble Kalman filter (Williams et al., 2005) for parameter esti-25

mation. The outputs of the EnKF were parameter frequency distributions that indicated
the statistics of the retrieved parameters generated by inverting the observations. In
Fig. 9 we show the retrieved PDFs for the turnover rates for four C pools, which can be
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compared to the true parameter values (vertical lines), and the prior parameter values,
which are represented by the width of the x-axes. The process of estimating confidence
intervals of model states and predictions is highly dependent on the prior estimates of
parameter (and model) error, as shown in the REFLEX experiment (Fox et al., 2009).
We are still learning how to properly quantify confidence intervals on parameter and5

state analyses.

6.6 How to assess a model-data fusion scheme

A first step to testing if MDF approaches are effective is to use synthetic data, where
the underlying “true” state of the system and model parameters are known. A synthetic
truth is generated by running the model with given parameters, noise is added, and10

data are thinned. These data are provided to the MDF scheme to test estimation of
parameters and retrieval of C fluxes, all of which are known (Fig. 9). A second step is
to examine posterior parameter distributions relative to priors. Have parameters been
constrained? Is there evidence that parameter priors were correct? For example, in
the synthetic case shown in Fig. 9 it is clear that turnover rates of foliage and soil15

organic matter were well constrained by NEE data, with PDFs concentrated around
the true parameter values used to generate the synthetic data. Posterior turnover rates
for fine roots and wood are barely different from the priors, with broad distributions
spanning the prior range. A third step is to check model residuals on NEE (or any other
observations), to see if they are Gaussian, a typical hypothesis of Bayesian approaches20

(see above). If multiple data time series are used, are they all consistent with the model,
or do they reveal potential biases in data or model (Williams et al., 2005)? It is useful to
iterate the optimization process from a different starting point (initial conditions) to see
if the posteriors are similar. Testing different assumptions in the MDF is also useful, for
instance, uniform versus Gaussian priors, altered model error estimates in KF schemes25

etc.
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6.7 Spatial and temporal parameter variability

With increasing FLUXNET data availability over a wide range of ecosystems, model-
data fusion approaches can improve our understanding and process representation
ability at regional and global scales. So far most biogeochemical models use the con-
cept of “plant functional type” to represent the ecosystem diversity, with typically 6 to 155

classes. Whether the associated parameters or process representations are generic
enough to apply across climate regimes, species differences, as well as large temporal
domains or whether they should be refined are critical questions that FLUXNET data
can help resolve.

6.7.1 Temporal variability10

For a prognostic model to be useful, dynamic processes must be represented within
the model, and parameters must be constant in time. If there is evidence that parame-
ters vary over time (Hui et al., 2003; Richardson et al., 2007), it means the parameters
are sensitive and that some component of model structure is missing. The relevant
structure must be included in the model for it to have prognostic value. Likewise, if15

there is no evidence that parameters vary, then they are shown to be insensitive. The
estimation of process parameters in variable conditions over time is likely to give new
insights in processes that are poorly understood (Santaren et al., 2007). Building on
the work of Santaren et al. (2007), we optimised the ORCHIDEE biogeochemical model
against eddy covariance data to retrieve the year-to-year variability of maximum pho-20

tosynthetic capacity (Vcmax). Significant interannual variations in Vcmax for the Aberfeldy
and Tharandt sites suggest there area additional processes related to productivity not
captured by ORCHIDEE, and possibly linked to the N cycle (Fig. 10). Similarly, Re-
ichstein et al. (2003) studied drought events by estimating the seasonal time course of
parameters of the PROXEL model using eddy covariance carbon and water fluxes at25

Mediterranean ecosystems.
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6.7.2 Spatial variability

The concept of plant functional type (PFT) simplifies the representation of ecosystem
functioning and groups model parameter values estimated at site level (Reichstein,
2006). However, inter-site parameter variability for analogous PFTs show limitations of
such a regionalization approach (e.g. Ibrom et al., 2006; van Dijk et al., 2005). Param-5

eters that show large between-site but low temporal variability should be used to help
define more realistic PFTs than are currently applied. The spatial variation in parame-
ters should be explicable on the basis of external drivers such as climatic, topographic
or geological variability. Model parameter regionalization approaches usually build on
remotely sensed variables as model drivers which are providing a basis for the extrap-10

olation of spatial patterns, but the quantification of the FLUXNET representativeness
and heterogeneity is fundamental to assess the upscaling potential of both model pa-
rameters and observed processes.

6.8 Evaluation of model deficiencies and benchmarking

One of the major interests of assimilation techniques for modellers is in the potential15

to highlight model deficiencies. For this objective, being able to include all sources
of uncertainty within a rigorous statistical framework represents a critical advantage.
Abramowitz et al. (2005, 2007, 2008) used artificial neural networks (ANN) linking me-
teorological forcing and measured fluxes to provide benchmarks against which to as-
sess performance of several LSMs. Performance of the ANNs was generally superior20

to that of the LSMs, which produced systematic errors in the fluxes of sensible heat,
water vapour and CO2 at five test FLUXNET sites. These errors could not be elimi-
nated through parameter optimization and it appears that structural improvements in
the LSMs are needed before their performance matches that of the benchmark ANNs.
Predictions using LSMs may be satisfactory in some parts of bioclimatic space and not25

in others. Abramowitz et al. (2008) used self-organizing maps to divide climate space
into a set distinct regions to help identify conditions under which model bias is greatest,
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thereby helping with the “detective work” of model improvement.
With conventional model-data evaluation (e.g. RMSE analyses) there is always the

risk of over-interpretation of a particular model-data mismatch, that only reflects poor
parameter calibrations. The details of these outcomes are probably only relevant to
a given model structure and thus cannot be extrapolated to other models. As an ex-5

ample, Fig. 10 illustrates the difficulty of one model to properly capture the amplitude
of both the seasonal cycle and the summer diurnal cycle of NEE (and not for the latent
heat flux). Note that the issue of temporal and spatial variability, discussed above, is
also relevant to this objective. However, a caution with any parameter optimization pro-
cess is not to correct for model biases with unrealistic parameter values, by carefully10

evaluating the posterior parameter estimates. Model failure after optimisation identi-
fies inadequate model structure, which ultimately leads to improvements in process
representation and increased confidence in the model’s projections.

7 Conclusions

There has been significant progress in LSM development, in generating flux data with15

error assessments from key biomes, and in coupling models and data for optimal anal-
yses. We have shown how the FLUXNET database can be used to improve forecasts
of global biogeochemical and climate models. MDF approaches provide a means to
identify which components of the carbon, water and energy balance are effectively con-
strained by current FLUXNET data and how uncertainty grows with prognostic runs.20

There are now some clear opportunities for LSM and FLUXNET communities to de-
velop this research.

Our vision for the future includes: (1) identifying and funding critical new locations for
FLUXNET towers in poorly studied biomes, for instance in tropical croplands; (2) nest-
ing EC towers within the regional footprints of tall towers that sample the CO2 con-25

centration of the planetary boundary layer (Helliker et al., 2004) to assist upscaling;
(3) linking EC towers effectively with the atmospheric column CO2 measurements gen-

2810

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/2785/2009/bgd-6-2785-2009-print.pdf
http://www.biogeosciences-discuss.net/6/2785/2009/bgd-6-2785-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 2785–2835, 2009

Improving land
surface models with

FLUXNET data

M. Williams et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

erated by the satellites OCO and GOSAT, expected from late 2009 (Feng et al., 2008);
(4) continued linkage to optical products from remote sensing, as these provide critical
information on canopy structure and phenology (Demarty et al., 2007); (5) use of plant
functional traits database to identify more realistic priors and to validate posteriors in
the data assimilation process (Luyssaert et al., 2007). Full exploitation of this vision is5

dependent on model-data fusion. Atmospheric transport models are critical for linking
land surface exchanges to CO2 concentration measurements from (2) and (3). Radia-
tive transfer models are vital for properly assimilating the raw optical information from
remote sensing (Quaife et al., 2008).

We have identified five major model-data fusion challenges for the FLUXNET and10

LSM communities to tackle, for improved assessment of current and future land surface
exchanges of matter and energy:

1. To determine appropriate use of current data and to explore the information
gained in using longer time series regarding future prediction. What can be
learned from assimilating 10+ years of EC data?15

2. To avoid confounding effects of missing process representation on parameter es-
timation.

3. To assimilate more data types (e.g. pools/stocks of carbon, earth observation
data) and to define improved observation operators. It would be valuable to deter-
mine which biometric time series would best complement EC data at FLUXNET20

sites.

4. To fully quantify uncertainties arising from data bias, model structure, and esti-
mates of initial conditions. We believe that MDF with multiple independent data
time series will best identify bias, and recommend a multi-site test of this idea.

5. To carefully test current model concepts (e.g. PFTs) and guide development25

of new concepts. FLUXNET data can be used to determine whether parame-
ters need to vary continuously in space in response to some remotely sensed
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trait, following approaches applied, for instance, by Williams et al. (2006). Thus,
FLUXNET data can be used to challenge and enrich the PFT approach, possibly
leading to a redefinition of PFTs.
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Table 1. Land surface model components and details, after Liu and Gupta (2007).

Model component Examples for typical LSMs

System boundary Lower atmosphere, deep soil/geological parent material
Forcing inputs Air temperature, short and long-wave radiation, precipitation, wind

speed, vapour pressure deficit, atmospheric CO2 concentration
Initial states Biogeochemical pools, vegetation and soil temperature and water

content
Parameters Rate constants for chemical processes, physical constants, biological

parameters
Model structure Process definitions and connectivity
Model states Biogeochemical pools, vegetation and soil temperature and water

content
Outputs Biogeochemical fluxes, dynamics of model states
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Table 2. Distribution of sites in the current FLUXNET La-Thuile data set with respect to climate
and vegetation classes. Climate is defined according to aggregated Köppen-Geiger classifica-
tion, cf. www.fluxdata.org. Vegetation classes (top line) are from IGBP definitions: Croplands,
closed shrublands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needle-
leaf forest, grassland, mixed forest, open shrublands, savanna, wetlands, woody savanna.

Number of sites available CRO CSH DBF EBF ENF GRA MF OSH SAV WET WSA Total

Tropical 1 0 0 10 0 1 0 1 1 0 2 16
Dry 0 0 0 1 1 3 0 1 1 0 3 10
Subtropical/mediterranean 5 3 11 5 17 11 2 3 2 0 4 63
Temperate 17 0 8 2 12 18 4 0 0 4 0 65
Temperate continental 7 1 9 1 17 7 8 3 0 0 0 53
Boreal 0 0 2 0 22 4 2 4 0 4 0 38
Arctic 0 0 2 0 0 1 0 0 0 3 0 6
Total 30 4 32 19 69 45 16 12 4 11 9 251
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Table 3. Characteristics of systematic and random uncertainties in eddy covariance measure-
ments of surface-atmosphere exchanges of CO2, H2O and energy.

Systematic Random

Examples • inadequate nocturnal turbulence
(low u∗)
• attenuation and imperfect spectral
response; calibration errors
• incomplete energy balance clo-
sure
• advection and non-flat terrain

• uncertainties due to surface het-
erogeneity and time varying foot-
print
• turbulence sampling errors
• measurement equipment glitches
(IRGA and sonic anemometer
“spikes”)

Time scale • operate at varying time scales:
fully systematic vs. selectively sys-
tematic
• accumulate linearly over time, i.e.
as

∑
di

• affect all measurements; assume
no autocorrelation
• accumulate in quadrature over

time, i.e. as
√∑

(εi )
2

Nature • deterministic, with variety of ef-
fects: e.g. fixed offset vs. relative off-
set

• stochastic: probability distribution
function with mean zero and stan-
dard deviation s

Potential for
identification

• cannot be identified through statis-
tical analyses

• characteristics of pdf can be es-
timated via statistical analyses (but
may be time-varying)

Potential for
correction

• can correct for systematic errors
(but corrections themselves are un-
certain)

• cannot correct for random errors

Effect on
data-model
fusion

• uncorrected systematic errors will
bias data-model fusion analyses

• random errors limit agreement be-
tween measurements and models,
but should not bias results
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Table 4. Simulations of ORC, LPJmL, BGC, MOD17+, and ANN are from Vetter et al. (2008).
MOD17+, ANN, FPA+LC, WBA are calibrated with FLUXNET data.

Acronym Model name Model type Time step Model drivers References

ORC Orchidee Process-oriented Sub-daily Meteorology, Land
cover, soil water
holding capacity

Krinner
et al. (2005)

LPJ Lund Potsdam
Jena managed
Land (LPJmL)

Process-oriented Daily Meteorology, Land
cover, soil water
holding capacity

Sitch
et al. (2003),
Bondeau
et al. (2007)

BGC Biome-BGC Process-oriented Daily Meteorology, Land
cover, soil water
holding capacity

Thornton
(1998)

MOD17+ Radiation Use
efficiency model

Daily Remote sensing
based FAPAR
(MODIS),
Meteorology,
Land cover

Running
et al. (2004)

ANN Artificial Neural
Network

Daily Remote sensing
based FAPAR
(Modis),
Meteorology,
Land cover

Papale and
Valentini (2003),
updated Vetter
et al. (2008)

FPA+LC FAPAR based
Productivity
Assessment+Land
Cover

Vegetation type
specific regression
models between
FAPAR and GPP

Annual Remote sensing
based FAPAR
(SeaWiFS),
Land cover

Jung et al.,
in press

WBA Water Balance
Approach

Upscaling of water
use efficiency

Multi-annual Remote sensing
based LAI
(MODIS,
CYCLOPES),
Meteorology,
Land cover,
river runoff data

Beer
et al. (2007),
updated
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Fig. 1. The multi-stage process for model-data fusion: a conceptual diagram showing the main
steps (and the iterative nature of these steps) involved in a comprehensive data-model fusion.
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Figure 2. Schematic of a typical land surface model.  LSMs include a range of processes operating on different scales. LSMs can be driven by atmospheric observations or 

analyses, or directly coupled to atmospheric models. All LSMs tend to represent the hourly processes, but daily and annual processes may not be included. 

 

26 

Fig. 2. Schematic of a typical land surface model. LSMs include a range of processes operating
on different scales. LSMs can be driven by atmospheric observations or analyses, or directly
coupled to atmospheric models. All LSMs tend to represent the hourly processes, but daily and
annual processes may not be included.
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Figure 3 Distribution of sites that are present in the current La-THuile 2007 FLUXNET database. (a) 

Geographical distribution, (b) in climate (annual temperature and precipitation ) space. In b) colours code 

annual potential shortwave radiation flux density [MJ m-2 day-1] according to the legend. Letters are country 

codes. 

Fig. 3. Distribution of sites that are present in the current La-Thuile 2007 FLUXNET database.
(A) Geographical distribution, (B) in climate (annual temperature and precipitation ) space.
In (B) colours code annual potential shortwave radiation flux density (MJ m−2 day−1) according
to the legend. Letters are country codes.
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Figure 4 Temporal development of MODIS fPAR-estimates during 2002 at the French Puéchabon FLUXNET 

site, an evergreen broadleaf forest (Holm Oak). Diamonds indicate the time series at the tower-pixel, vertical 

lines denote between-pixel standard deviation of 3x3 pixels around the tower. Colours code the frequency of 

pixels within 100x100 km around the tower having the respective fPAR at the day of the year indicated on the x-

axis. Solid and dashed lines indicate median, lower and upper quartile fPAR over all pixels 100x100km around 

the tower. It can be seen that the tower represents the more productive portion of the landscape (assuming 

FPAR is a proxy for productivity). 

 

Fig. 4. Temporal development of MODIS fPAR-estimates during 2002 at the French Puéchabon
FLUXNET site, an evergreen broadleaf forest (Holm Oak). Diamonds indicate the time series
at the tower-pixel, vertical lines denote between-pixel standard deviation of 3×3 pixels around
the tower. Colours code the frequency of pixels within 100×100 km around the tower having the
respective fPAR at the day of the year indicated on the x-axis. Solid and dashed lines indicate
median, lower and upper quartile fPAR over all pixels 100×100 km around the tower. It can be
seen that the tower represents the more productive portion of the landscape (assuming FPAR
is a proxy for productivity).
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Figure 5: A comprehensive model evaluation framework using measured latent heat flux (LE) from the 

Tumbarumba flux monitoring site and corresponding predictions from the CABLE model and model 

improvement by adding a soil and litter-layer evaporation scheme (CABLESL). Instantaneous (half-hourly) 
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Fig. 5. A comprehensive model evaluation framework using measured latent heat flux (LE) from the Tumbarumba
flux monitoring site and corresponding predictions from the CABLE model and model improvement by adding a soil and
litter-layer evaporation scheme (CABLESL). Instantaneous (half-hourly) observed versus CABLE (a) and CABLESL (b)
at the Tumbarumba FLUXNET site for 2001–2006. Some common evaluation metrics are also displayed. Int=intercept,
RMSE=root-mean-square-error. EF=model efficiency (Meyer and Butler, 1993). (c) The time series of model residuals
from (a) and (b). (d) Orthonormal Wavelet Transformation (OWT) identifies the time scales at which CABLESL repre-
sents a net improvement over CABLE (see text for description). The wavelet coherence between observations and the
model CABLE (e) and CABLESL (f) are shown as the full wavelet half-plane.
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Figure 6. Matrix of R2 for simulations of mean annual GPP for 36 major watersheds in Europe from different 

process- and data oriented models. PCA1 is the first principal component and can be regarded as the common 

information content of all models. The correlation of the European GPP pattern is strong among data-oriented 

models and with the LPJ model. See Table 4 for abbreviations. 
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Fig. 6. Matrix of R2 for simulations of mean annual GPP for 36 major watersheds in Europe
from different process- and data oriented models. PCA1 is the first principal component and
can be regarded as the common information content of all models. The correlation of the
European GPP pattern is strong among data-oriented models and with the LPJ model. See
Table 4 for abbreviations.
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Figure 7 CASA model performance statistics for NEP at ten eddy covariance sites is higher in relaxed steady 

state approaches (red) than in cases considering ecosystems in equilibrium for model optimization (blue) (MEF – 

model efficiency; and NAE – normalized average error) (Carvalhais et al., 2008). 
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Fig. 7. CASA model performance statistics for NEP at ten eddy covariance sites is higher in
relaxed steady state approaches (red) than in cases considering ecosystems in equilibrium
for model optimization (blue) (MEF – model efficiency; and NAE – normalized average error)
(Carvalhais et al., 2008).
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Figure 8 Results from a genetic algorithm (GA) applied to parameter estimation in the DALEC model as part of 

the REFLEX project (Fox et al., in review). Synthetic, noisy and sparse data were supplied to the GA. As the 

calculations proceeded, the current best estimate of parameters and the corresponding cost function were saved, 

and values of the cost function and selected parameters (p1, p10, p12) are shown here. 

Fig. 8. Results from a genetic algorithm (GA) applied to parameter estimation in the DALEC
model as part of the REFLEX project (Fox et al., in review). Synthetic, noisy and sparse data
were supplied to the GA. As the calculations proceeded, the current best estimate of param-
eters and the corresponding cost function were saved, and values of the cost function and
selected parameters (p1, p10, p12) are shown here.
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Figure 9. Parameter retrieval from a synthetic experiment using the DALEC model (Williams et al., 2005).  

Synthetic, noisy and sparse data generated from DALEC were supplied to an Ensemble Kalman filter (Williams 

et al., 2005) for parameter estimation. “True” parameter values for turnover rates of foliage, stem wood, fine 

roots and soil organic matter are shown by the red lines. The frequency distributions indicate the statistics of the 

retrieved parameters generated by inverting the observations. The x-axis limits indicate the spread of the prior 

estimates for each parameter. 

 

Fig. 9. Parameter retrieval from a synthetic experiment using the DALEC model (Williams et
al., 2005). Synthetic, noisy and sparse data generated from DALEC were supplied to an En-
semble Kalman filter (Williams et al., 2005) for parameter estimation. “True” parameter values
for turnover rates of foliage, stem wood, fine roots and soil organic matter are shown by the red
lines. The frequency distributions indicate the statistics of the retrieved parameters generated
by inverting the observations. The x-axis limits indicate the spread of the prior estimates for
each parameter.
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Figure 10 Some results from the optimisation of 18 parameters of the ORCHIDEE model at 4 temperate 

needleleaf forest sites for several years: 2 years at le Bray (BX) and Aberfeldy (AB) and 4 years at Tharandt 

(TH) and Weilden (WE). Green is prior ORCHIDEE model, red is optimised model, black are the data.One 

parameter set is optimized each year using NEE, latent, sensible and net radiation fluxes (using half hourly 

values, see Santaren et al. 2007). Upper panels show the model-data fit (daily values and mean diurnal cycle 

during the growing season) while the lower panel shows the estimated Vcmax parameter values for each sites and 

each year: values a reported with respect to the prior value.  
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Fig. 10. Some results from the optimisation of 18 parameters of the ORCHIDEE model at
4 temperate needleleaf forest sites for several years: 2 years at le Bray (BX) and Aberfeldy
(AB) and 4 years at Tharandt (TH) and Weilden (WE). Green is prior ORCHIDEE model, red
is optimised model, black are the data. One parameter set is optimized each year using NEE,
latent, sensible and net radiation fluxes (using half hourly values, see Santaren et al., 2007).
Upper panels show the model-data fit (daily values and mean diurnal cycle during the growing
season) while the lower panel shows the estimated Vcmax parameter values for each sites and
each year: values a reported with respect to the prior value.
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